موضوع: Dry friction and instabilities الخميس 29 ديسمبر 2011 - 22:41
Dry friction can induce several types of instabilities in mechanical systems, which display a stable behaviour in the absence of friction. For instance, friction-related dynamical instabilities are thought to be responsible of brake squeal and of the 'song' of a glass harp, phenomena which involve stick and slip, modelled as a drop of friction coefficient with velocity. A connection between dry friction and flutter instability in a simple mechanical system has been discovered.
Fluid friction
Main article: Viscosity
Fluid friction occurs between layers within a fluid that are moving relative to each other. This internal resistance to flow is described by viscosity. In everyday terms viscosity is "thickness". Thus, water is "thin", having a lower viscosity, while honey is "thick", having a higher viscosity. Put simply, the less viscous the fluid is, the greater its ease of movement.
All real fluids (except superfluids) have some resistance to stress and therefore are viscous, but a fluid which has no resistance to shear stress is known as an ideal fluid or inviscid fluid.
Lubricated friction
Main article: Lubrication
Lubricated friction is a case of fluid friction where a fluid separates two solid surfaces. Lubrication is a technique employed to reduce wear of one or both surfaces in close proximity moving relative to each another by interposing a substance called a lubricant between the surfaces.
In most cases the applied load is carried by pressure generated within the fluid due to the frictional viscous resistance to motion of the lubricating fluid between the surfaces. Adequate lubrication allows smooth continuous operation of equipment, with only mild wear, and without excessive stresses or seizures at bearings. When lubrication breaks down, metal or other components can rub destructively over each other, causing heat and possibly damage or failure.
Skin friction
Main article: Parasitic drag
Skin friction arises from the friction of the fluid against the "skin" of the object that is moving through it. Skin friction arises from the interaction between the fluid and the skin of the body, and is directly related to the area of the surface of the body that is in contact with the fluid. Skin friction follows the drag equation and rises with the square of the velocity.
Skin friction is caused by viscous drag in the boundary layer around the object. There are two ways to decrease skin friction: the first is to shape the moving body so that smooth flow is possible, like an airfoil. The second method is to decrease the length and cross-section of the moving object as much as is practicable.
Internal friction
Main article: Plastic deformation of solids
See also: Deformation (engineering)
Internal friction is the force resisting motion between the elements making up a solid material while it undergoes plastic deformation.
Plastic deformation in solids is an irreversible change in the internal molecular structure of an object. This change may be due to either (or both) an applied force or a change in temperature. The change of an object's shape is called strain. The force causing it is called stress. Stress does not necessarily cause permanent change. As deformation occurs, internal forces oppose the applied force. If the applied stress is not too large these opposing forces may completely resist the applied force, allowing the object to assume a new equilibrium state and to return to its original shape when the force is removed. This is what is known in the literature as elastic deformation (or elasticity). Larger forces in excess of the elastic limit may cause a permanent (irreversible) deformation of the object. This is what is known as plastic deformation.
Other types of friction
Rolling resistance
Main article: Rolling resistance
Rolling resistance is the force that resists the rolling of a wheel or other circular object along a surface caused by deformations in the object and/or surface. Generally the force of rolling resistance is less than that associated with kinetic friction. Typical values for the coefficient of rolling resistance are 0.001. One of the most common examples of rolling resistance is the movement of motor vehicle tires on a road, a process which generates heat and sound as by-products.
Triboelectric effect
Main article: Triboelectric effect
Rubbing dissimilar materials against one another can cause a build-up of electrostatic charge, which can be hazardous if flammable gases or vapours are present. When the static build-up discharges, explosions can be caused by ignition of the flammable mixture.
Belt friction
Main article: Belt friction
Belt friction is a physical property observed from the forces acting on a belt wrapped around a pulley, when one end is being pulled. The resulting tension, which acts on both ends of the belt, can be modeled by the belt friction equation.
In practice, the theoretical tension acting on the belt or rope calculated by the belt friction equation can be compared to the maximum tension the belt can support. This helps a designer of such a rig to know how many times the belt or rope must be wrapped around the pulley to prevent it from slipping. Mountain climbers and sailing crews demonstrate a standard knowledge of belt friction when accomplishing basic tasks.